Fundamentals

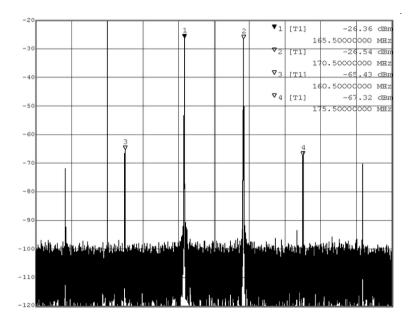
of Passive Intermodulation and

Distance-To-PIM

Ferdinand Gerhardes, Anritsu

April 2012

inritsu 02/0	6/2012 01:14:45 pm	Measurements
	PIM Ap	Test
Ref Lvl -50.0 dBm	-50.0.66m	Measure Off
	-60.0	
Scale 10 dB/div	-70.0	PIM
	- 50.0	Distance-to-
Span 5.000 kHz	- 90.0	
	-100.0 SHIFT Button Cancels PIM Measurement	PIM
Auto Range Off		
Trace Mode Normal	-1200 About Maria Angel	λ
IMD 3(-) 1.870 GHz	Start Freq 1.859 597 500 GHz Stop Freq 1.870 002 501	D GHz
1.670 GHz	3rd Order IM (-) Frequency 1870.0 MHz	
Test Duration 10 s	PIM 134.9dBc, -88.9_dBr	m
Freq Ref 10.000 MHz	PEAK VALUE THIS MEASUREMENT 134.9 dB -88.8 dBm	
	Frequency #1 1930.0 MHz	Save
	Frequency #2 1990 0 MHz Output Power 46.0 dBm, 40 W	Measurement
Freq	Amplitude Setup Measurements	Marker

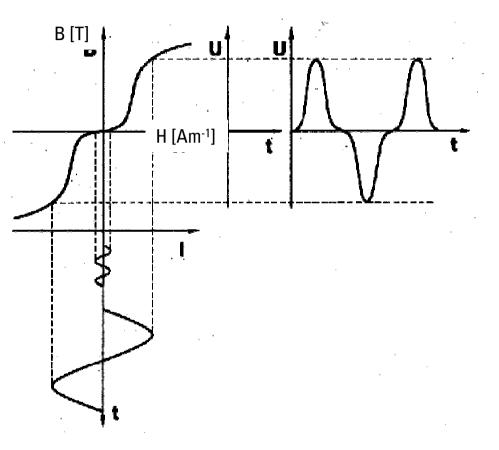

-71

^oIntermodul₃(ion

-80

Active versus Passive Intermodulation

- Intermodulation is caused when 2 or more RF carriers are mixed in an active system and form unwanted signals
- When passive components containing non-linear elements those are the source of this interference
- we refer it in this case as
 Passive InterModulation (PIM)

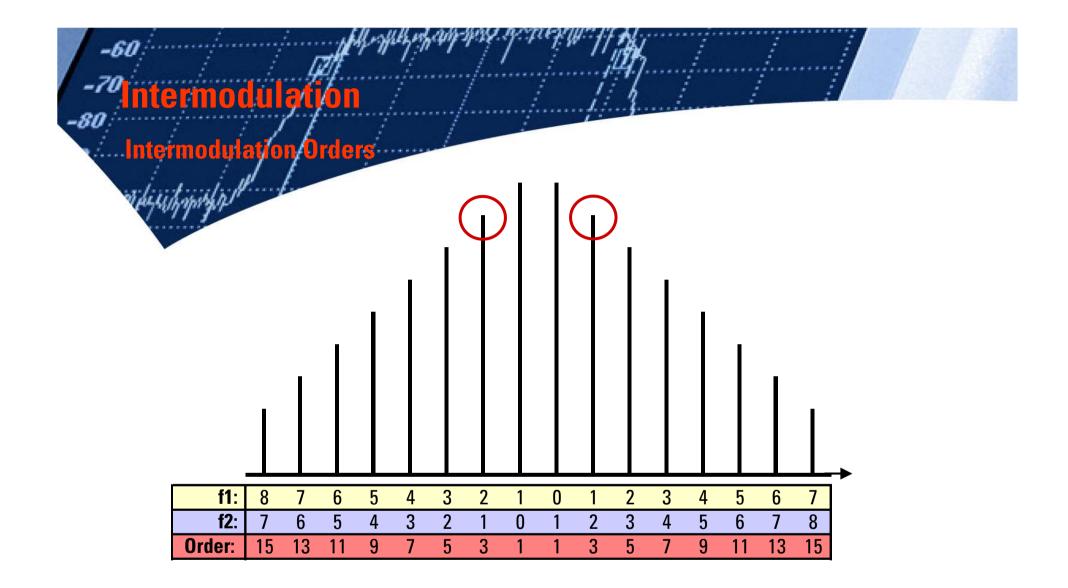


Non-Linear "Dicde Effect" at ferromagnetic metals

A low signale operating in a linear region and a large signal operating in the non-linear region of a ferromagnetic metal is creating additional spectral components in the output signal.

ntermodulation

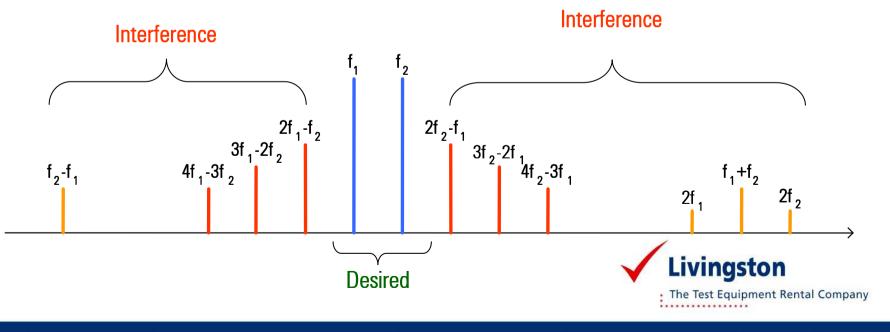
-70 intermodulation


-60

Intermodulation/mathematics

Order	Frequ	encies	Tone 1	Tone 2
1st Order	f ₁	f ₂	100 MHz	101 MHz
2nd Order	f ₁ +f ₂	f ₂ +f ₁	201 MHz	1 MHz
3rd Order	2f ₁ -f ₂	2f ₂ -f ₁	99 MHz	102 MHz
	2f ₁ +f ₂	2f ₂ +f ₁	301 MHz	302 MHz
4th Order	2f ₂ +2f ₁	2f ₂ -2f ₁	402 MHz	2 MHz
5th Order	3f ₁ -2f ₂	3f ₂ -2f ₁	98 MHZ	103 MHz
	3f ₁ +2f ₂	3f ₂ +2f ₁	502 MHz	503 MHz
7th Order	4f ₁ -3f ₂	4f ₂ -3f ₁	97 MHz	104 MHz
	4f ₁ +3f ₂	4f ₂ +3f ₁		
9th Order	5f ₁ -4f ₂	5f ₂ -4f ₁	96 MHz	105 MHz
	5f ₁ +4f ₂	4f ₂ +3f ₁		
e.t.c.				

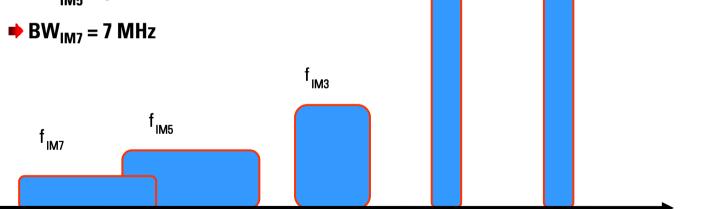
Order	Frequ	encies	Tone 1	Tone 2	
1st Order	f ₁	f ₂	100 MHz	101 MHz	
2nd Order	f ₁ +f ₂	f ₂ +f ₁	201 MHz	1 MHz	
3rd Order	2f ₁ -f ₂	2f ₂ -f ₁	99 MHz	102 MHz	
	$2f_{1}+f_{2}$	2f ₂ +f ₁	301 MHz	302 MHz	
4th Order	2f ₂ +2f ₁	2f ₂ -2f ₁	402 MHz	2 MHz	
5th Order	3f ₁ -2f ₂	3f ₂ -2f ₁	98 MHZ	103 MHz	
	3f ₁ +2f ₂	3f ₂ +2f ₁	502 MHz	503 MHz	
7th Order	4f ₁ -3f ₂	4f ₂ -3f ₁	97 MHz	104 MHz	
	4f ₁ +3f ₂	4f ₂ +3f ₁			
9th Order	5f ₁ -4f ₂	5f ₂ -4f ₁	96 MHz	105 MHz	
	5f ₁ +4f ₂	4f ₂ +3f ₁			
e.t.c.					



-70 Intermodulation

PIM is a result of signal mixing at nonlinearities

- **IM3 PIM non-linearity increases, in theory, at a ratio of 3:1 (PIM to signal)**
- A 1 dB increase in carrier power correlates to a theoretical increase of 3 dB in PIM signal power.
- In practice, the actual effect is closer to 2,3-2,5 dB as the thermal noise constant -174 dBm/ Hz becomes an error contributor.



-70 Intermodulation

PIM are clogging up complete RF bands

PIM multiplies bandwidth

- If bandwidth of f₁ and f₂ is 1 MHz then
- ➡ BW_{IM3} = 3 MHz
- ➡ BW_{IM5} = 5 MHz

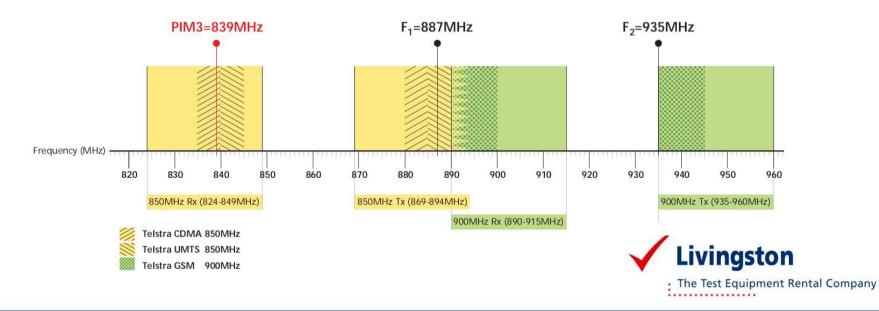
f₁

 f_2

PIM impacts UL-bands of other services

A real scenario result and it's spectrum

-60


-11

System	Intermodulation Products
GSM 900	3rd order in GSM 900 \rightarrow 2 × GSM 900 T× - 1 × GSM 900 T×
PCN	3rd order in PCM \rightarrow 2 × PCN TX - 1 × PCN TX
UMTS	7th order in GSM 900 \rightarrow 4 × UMTS T× - 3 × UMTS T×
Triband System	2nd order in GSM 900 \rightarrow 1 × PCN TX - 1 × GSM 900 TX
GSM 900, PCN, UMTS	4th order in UMTS \rightarrow 3 × GSM 900 TX - 1 × GSM 900 TX
	3rd order in UMTS \rightarrow 2 × PCN TX - 1 × PCN TX

➡ f_{IM3} = 839 MHz, CDMA RX

Summary of the phenomenon

umma

-8

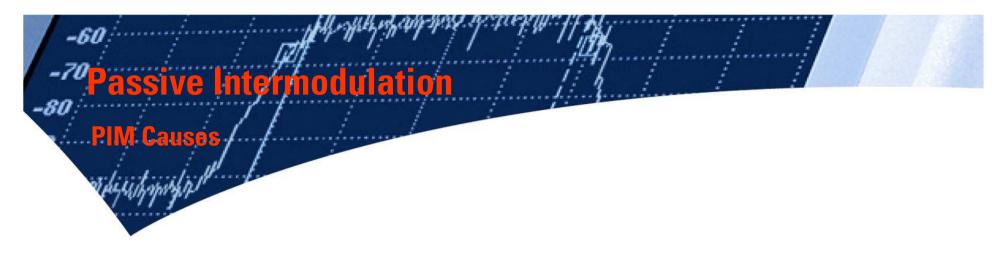
PIM is of particular concern when

- PIM products fall in the RX band
- Two or more transmitter channels share a common antenna
- TX signal levels are high
- RX sensitivity is high
- TX and RX are diplexed

Inritsu 12/02	2/2011	02:33:	08 pm				10		+	Measure	ments
Calibration	M3 81.33 dB @25.45 m						PIM Analyzer Distance-to-PIM			IM	
On	80.0 (IB					~			Measure	<u>011</u>
Data Points 128	82.51			2						PIN	/ C
		m	9	.8 n			25.5	m	Measured	Distance	e-to- 🧉
F1 Freq 869.000 MHz	87.5		/		X				vs.	PIN	Л
2 Freq Range 879.000 MHz	^{90.0} 2.0	m	$\langle $	9.6 n	•		24.8	m \	Actual		
891.500 MHz	92.5		V								
IMD Range 324.000 MHz	95.0		V			\uparrow					
49.000 MHz											
Cable	97.5					$\{ \} \}$					
F4-50A (6 GHz	100.0										
Prop Velocity 0.880	102.5				V	$\downarrow \downarrow $				7	
ble Loss (dB/m)	Start D	istanc	e 0.00	m					Stop Distance 40.00	m	
0.073	Mkr	Ref	Delta	R	ef X	Ref	Y D	elta X	Delta Y	Sav	е
	1	ON	OFF	1.8	1.89 m		84.22 dB			Measur	
Output Power 40 W	- 4		OFF		32 m	85.15				Measur	ement
	3	ON	OFF		45 m	81.33					
Freq/Dist			A	mplitude		Swee	ep/Setup Measurements		Marker		

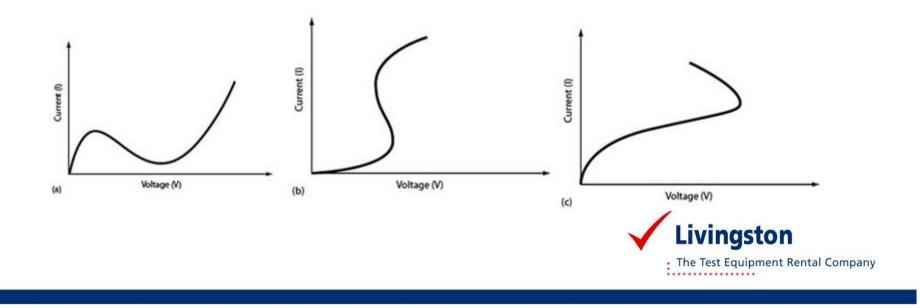
Distance-to-PIM (DTP) screenshot showing a measurement at 850 MHz.

. Summary of the phenomenon


PIM is measured

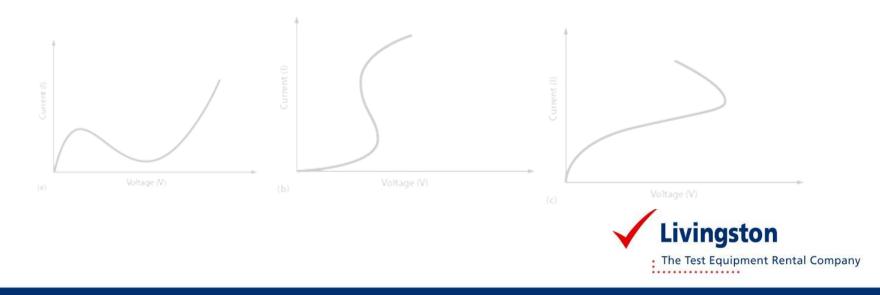
M Summa

- acc. to IEC 62037 Ed. 1 1999 RF connectors, connector cable assemblies, and cables intermodulation level measurement
- Standard specifies the use of two 20 watt carriers (2 x +43 dBm)
- **Typical IM3 value is \geq -165 dBc**


C			IEC 6	2027
≥.				
			Edition 1	.0 1999-09
	RNATIOI IDARD	NAL		
	ME RNATIOI	NALE		
measuremen	1	assemblies and cabi - Mesure du niveau		on level
neasuremen Connecteurs, NTERNATIONAL SLEETROTECHN	t cordons et câbles -			on level
NTERNATIONAL LECTROTECHNISION COMMISSION COMMISSION	t cordons et câbles - col col			205
measuremen	t cordons et câbles - col col		d'Intermodulation	205 14

Non-Linearities take two different forms

- **Contact Non-Linearity**
- Material Non-Linearity

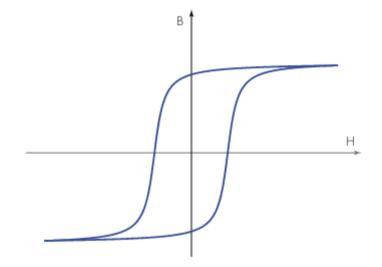

Passive Internodulation

-81

PIM Causes / Contect Non-Linearities

Causes of contact Non-Linearities

- Junction capacitance due to thin oxide layer between conductors
- Impurities on metal surface
- Semiconductor tunnel / schottky effect at point of contact
- Contact restistance caused by two dissimilar metals


Passive Intermodulation

-81

PIM Causes - Material Non-Linearities

Causes of material Non-Linearities

- Hysteresis effect in ferromagnetic materials (nickel, iron, steel)
- Thermal Heating due to poor conduction rate (torque, corrosion, cracks)

Passive Internodulation

Root Causes of PIM in a real RF environment

- Metal to metal contacts
 - **Not enough contact pressure.**
 - Cracked solder joints
 - Cold solder joints
 - Scratches or dents at mating interfaces
 - **Burrs**
 - Metal flakes, chips, dust
 - Improperly formed or sized parts
 - Misaligned parts
 - Rough mating surfaces (saw cut)
 - Loose metal to metal contacts
 - Loose or rusty bolts
- Ferromagnetic materials (steel, nickel, etc.)

- Contamination
 - Trapped between mating surfaces
 - Trapped between plating layers
 - Solder splatters
 - Dirt or debris
- Surface Oxides
- Insufficient thickness of plated metal causing RF heating
- Too much or too little torque at connections

Field Examples

-80

ferromagnetic materials

Passive Internodulation

Cracked solder joints

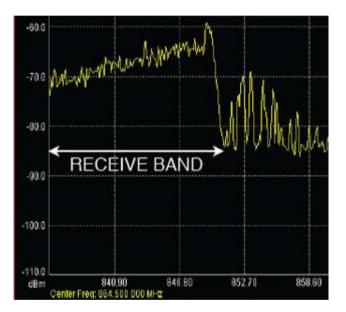
Antenna showing oxidation within the power divider

Passive Internodulation Field Examples

-80

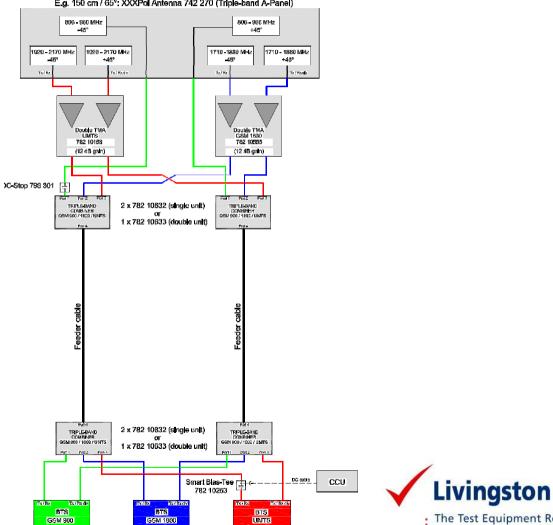
LDF4-50A RF-Repeater feeder cable

- -10 dB Return Loss after installation
- no Repeater operation possible due to high noise level in Donor-Site RX band
- -35 dB Return Loss after connector swap



Passive Internodulation

PIM versus Arcing


- A common PIM field failure in hardware is not PIM at all, it is arcing
- Arching produces a wide-band noise signal that covers a much broader band than intermodulation.
- Arcing, because it is wide-band, raises the whole receive noise floor.

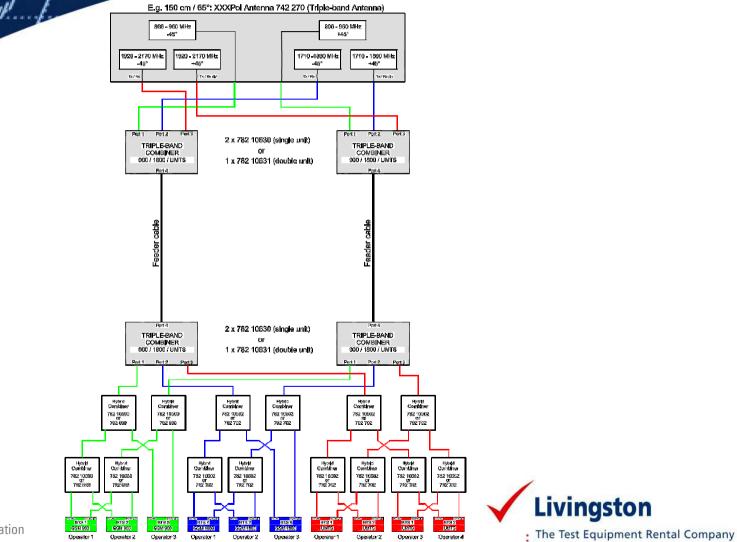
terconnect R C

M 900 / GSM 1800 / UMTS GS Cr

E.g. 150 cm / 65°: XXXPol Antenna 742 270 (Triple-band A-Panel)

Copyright@Kathrein Corporation

-60


-1

-80

The Test Equipment Rental Company

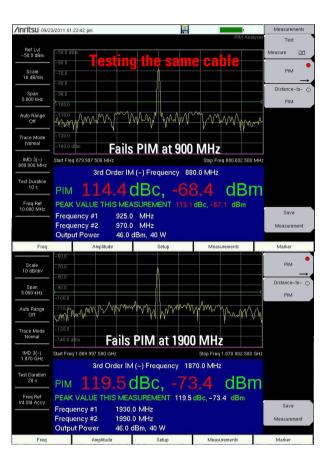
PIM sources within the RF interconnection

Co-Siting 3 Op GSM 900 / GSM 1800 and 4 Op UMTS

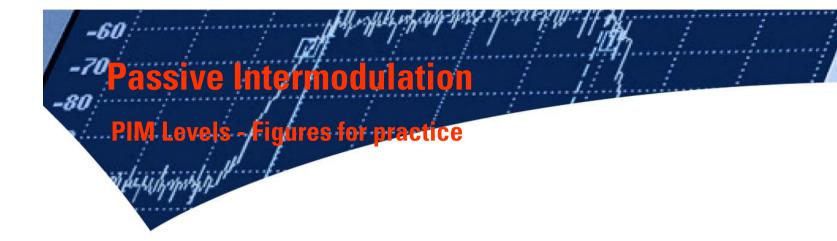
Copyright@Kathrein Corporation

-60

-1


-80

The rest Equipment Kentar C


Passive Intermodulation

Does it matter at what frequency I test at?

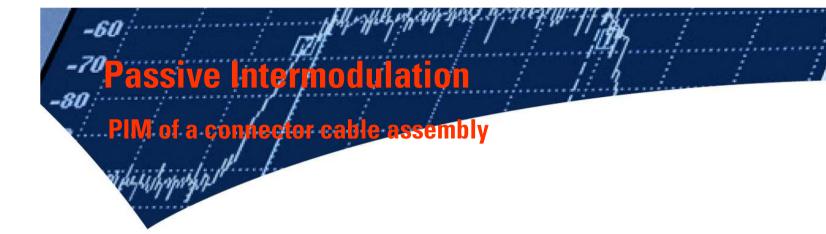
- PIM is not frequency selective
- If the antenna system can pass
 - PIM test equipment frequencies and intermodulation frequencies
 - Then test at those frequencies
- If there are frequency limitating
 - 🟓 antennas
 - 🔶 TMAs
 - lightning arrestors
 - combiners/duplexers
 - Then pick frequencies in pass band

The PIM level at which repairs must be made depends on a number of factors:

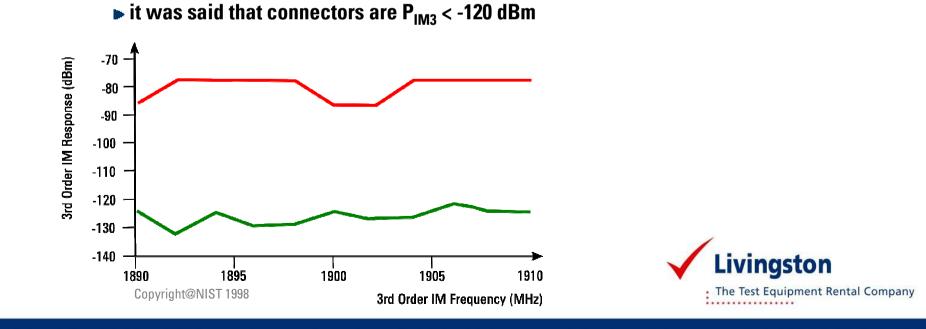
PIM level near to -110 dBm

- RX will begin to compete with Cell Phones
- assuming TX carriers at +43 dBm, the threshold becomes
 - ▶ -110 dBm or -153 dBc
- due to RX Diversity PIM problems on a single RX branch can be tolerated
 - $\blacktriangleright\,$ for \sim 10 15 dB above the -153 dBc
 - ▶ -143 to -138 dBc

Beyond this point the BTS begins to lose receive diversity and call quality suffers



The PIM level of a connector depends on material, power and torque


DIN 7/16 coax cable connectors

- typically PIM values of -140 to -168 dBc
- recommended torque (IEC) 35 Nm, in practice often 25 -30 Nm
- **b** Example: PIM difference between hand-tightend and torque specified
 - **900** MHz band signals with 25 MHz tone separation and each 10 W carrier power
 - ► hand-tightened connector → IM3 = -115,3 dB
 - ▶ 25 Nm torque-tightened connector → IM3 = -173.1 dB

- Coaxial cables together with connectors are the major source of PIM in communications systems
 - Comparision of 2 commercial PCS 1900 BTS feeder cables with 7/16" connectors
 - ▶ IM3 PIM was measured with 2 CW tones each with +40 dBm power

-70 Passive Internodulation

-60

Conventional way to measure PIM

 $^{\circ}$

000

- Intermodulation products generated by TX signals can interfere in the RX band,
- The common result is that these IM's can "over-power" receive channels.
 - Calls are dropped or
 - Channels are believed to be occupied and being used by the BTS

indicators of PIM in a Cellular Ne

- Loss of Air Time and thus ARPU
- Cell Coverage shrinks
- Data Transmission rate drops
- RX control loop shows no problem
- Antenna sweep detects no issue
- RX Noise Level is high

Can you detect PIM with a Sweeper?

IM Measurments

No, because

- a single signal does not create mixing,
- RF TX level too low,
- Dynamic Range is too low
- You need a tool to identify PIM
 - with respect to level
 - Noise Floor
 - source
 - and location
- A tool to verify the quality of installation and discrete component performance

-70 Anritsu PIM Asterion Box

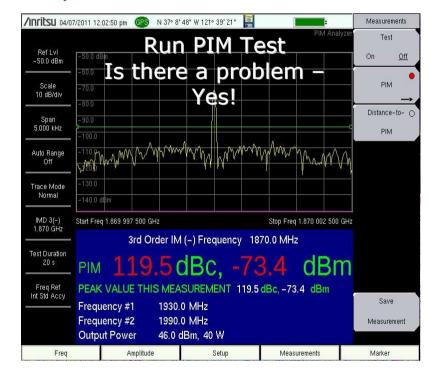
The Fastest Way to Pinpoint the Source of PIM

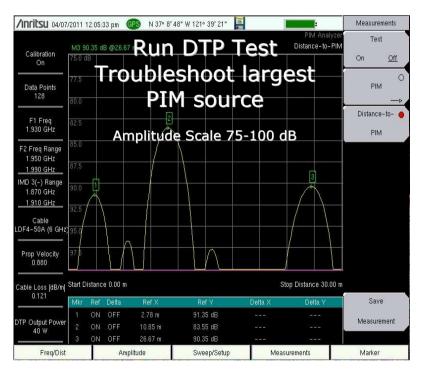
Available PIM Master models

Model	RF Band	RF range for f_1 and f_2	Power Levels	
MW8219A	PCS	1930 - 1990 MHz		
	AWS	2110 - 2155 MHz	20 20 40 \\/	
MW8209A	E-GSM	925 - 960 MHz	20, 30, 40 W	
MW8208A	US Cellular	869 - 894 MHz		

Handheld models supporting PIM Master

- ◆ Site Master™
 S332E, S362E
- Spectrum Master™ MS271xE, MS2721B, MS272xC
- Cell Master™ MT8212E, MT8213E
- BTS Master[™] MT8221B, MT8222B



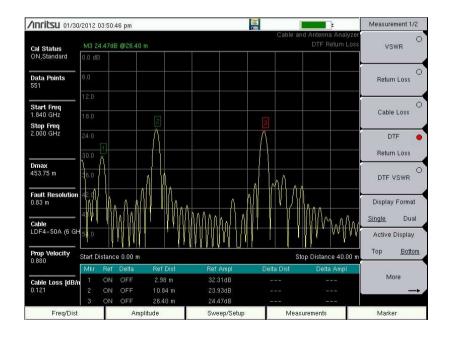


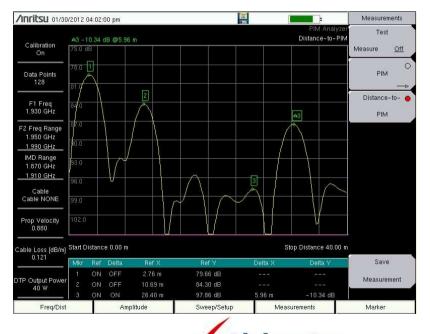
Passive Intermodulation Measurements

Measure PIM level and location

-80

DUT 26 m cable with PIM Sources @ 3.1 m, 10.7 m, 25.9 m

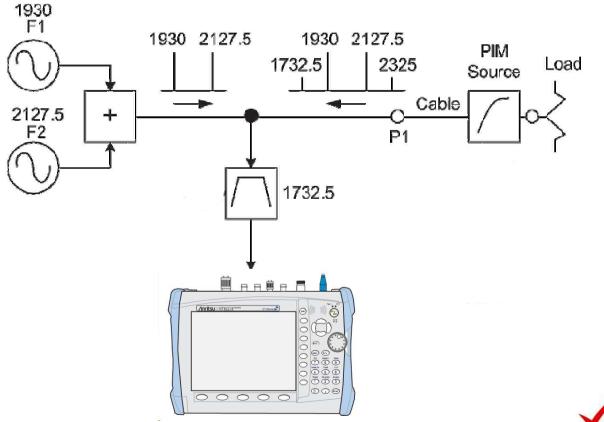

-70 Passive Internodulation Measurement


Finding of hidden and unknown PIM sources

-60

Using Distance-to-Fault to Verify Antenna Location

Using Marker and Delta Marker to Identify Distance-to-PIM beyond the Antenna

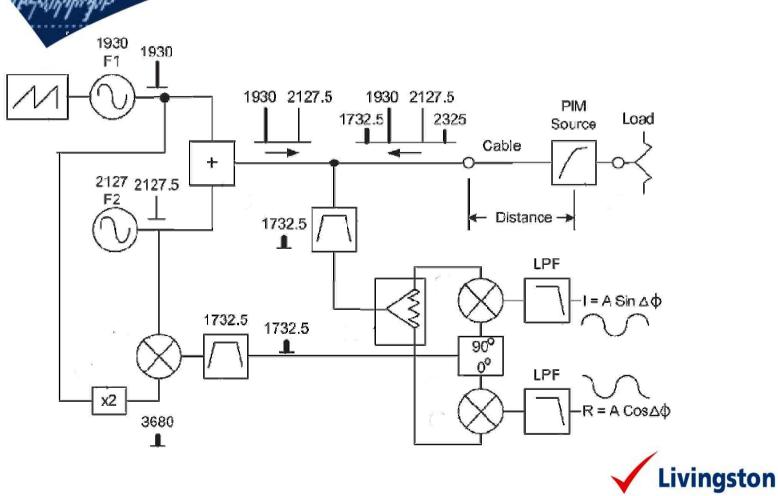


Livingston The Test Equipment Rental Company

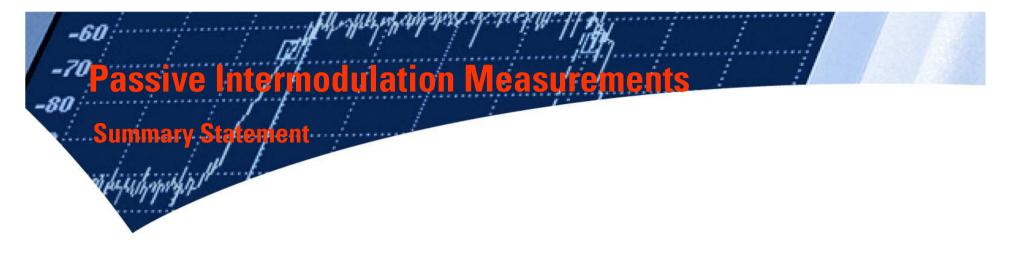
Passive Intermodulation Measurements

Prior way to measure PIM levels (example)

-60


assive Internodulation Measurements

Examplified principle on how to measure DTP


-60

-11

-80

The Test Equipment Rental Company

- PIM = reduces site performance
- **PIM** sources can be eliminated / minimized through:
 - Careful construction techniques'
 - Use of low PIM components.
 - Careful site design.
- PIM testing should be dynamic (not static)
- PIM testing <u>AND</u> VSWR testing are needed to verify system performance.

<u>/inritsu</u>

Discover What's Possible™